Local Dependence in Exponential Random Network Models

ثبت نشده
چکیده

Graph representations are used across disciplines for the analysis and visualization of relational data. Exponential random graph models allow for a general method of modelling the underlying stochastic process that has generated the observed data conditional on observer attributes of the vertices, or nodes. Recent developments in ERGMs have introduced the notions of local dependence and the exponential random network model, or ERNM. Local dependence enforces the assumption of independence between edges that connect nodes that are, in some sense, “far apart.” This is formalized by the introduction of a neighborhood structure on the graph: a partition of the vertices with the property that edges between two neighborhoods are stochastically independent of all other edge variables. This independence allows for the proof of a desirable consistency condition and a central limit theorem for statistics of the graph. The random network model allows for the joint modelling of both the graph and random attributes of the vertices. This has useful applications in network analysis, as it allows researchers to make inferences about how graphical features affect vertices and vice versa. This thesis combines these two developments to show the original result that ERNMs with the local dependence property have the same useful consistency property and that a similar central limit theorem also holds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local dependence in random graph models: characterization, properties and statistical inference.

Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. O...

متن کامل

Cycle Census Statistics for Exponential Random Graph Models

Exponential family models for random graphs (ERGs, also known as p∗ models) are an increasingly popular tool for the analysis of social networks. ERGs allow for the parameterization of complex dependence among edges within a likelihood-based framework, and are often used to model local influences on global structure. This paper introduces a family of cycle statistics, which allow for the modeli...

متن کامل

An introduction to exponential random graph (p*) models for social networks

This article provides an introductory summary to the formulation and application of exponential random graph models for social networks. The possible ties among nodes of a network are regarded as random variables, and assumptions about dependencies among these random tie variables determine the general form of the exponential random graph model for the network. Examples of different dependence ...

متن کامل

Exploring biological network structure using exponential random graph models

MOTIVATION The functioning of biological networks depends in large part on their complex underlying structure. When studying their systemic nature many modeling approaches focus on identifying simple, but prominent, structural components, as such components are easier to understand, and, once identified, can be used as building blocks to succinctly describe the network. RESULTS In recent soci...

متن کامل

Monitoring of Social Network and Change Detection by Applying Statistical Process: ERGM

The statistical modeling of social network data needs much effort  because of the complex dependence structure of the tie variables. In order to formulate such dependences, the statistical exponential families of distributions can provide a flexible structure. In this regard, the statistical characteristics of the network is provided to be encapsulated within an Exponential Random Graph Model (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017